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Abstract—The problem of scheduling best effort flows from
a dynamic population sharing a time varying wireless channel,
with the objective of minimizing mean sojourn time is considered.
The key tradeoff involved is between prioritizing flows with
short residual sizes and maximizing opportunistic capacity gain
by selecting flows that currently see good channels. This tradeoff
is explicitly characterized by introducing a new queueing model
that involves servers with state-dependent capacity regions. In the
transient case and for (bounding) polymatroid capacity regions,
the optimal scheduler is given and used to obtain sub-optimality
bounds for various heuristics. Using a mix of analysis and
simulation two regimes are described: one where fully exploiting
opportunistic gain is sufficient and further using residual flow
sizes for scheduling will result in only minimal reduction in mean
sojourn time, and the other, where the use of this information can
indeed offer significant reduction. A new scheduler is proposed
which performs well in both regimes.

I. INTRODUCTION

We consider a wireless link shared by a dynamic population
of flows/users1. Flows of random size (bits) arrive at the
base station at random times, and leave when their transfer
is complete. The transmission rate supported by the wireless
channel (referred to as the channel state) of each user varies
randomly over time and is independent of that of other users.
The scheduling problem in this context is to select which
flow to serve based on the current system state (e.g., residual
flow sizes and channel states of the contending flows), with
the objective of minimizing the mean sojourn time of flows.
This scheduling problem involves a key tradeoff between
prioritizing flows with short residual sizes and maximizing the
opportunistic gain; below we elaborate further on this.

One extreme of this problem is the case where the wireless
channel is in fact a constant capacity server. This reduces the
system to a work-conserving G/G/1 queue, and in that case the
Shortest Remaining Processing Time (SRPT) scheduler [1] is
known to be optimal in a very strong sense: SRPT not only
minimizes the mean sojourn time but also the number of flows
in the system at all times.

However, unlike a constant capacity server, the time-varying
nature of wireless channels provides a scope for opportunistic
scheduling [2]–[4]. Therefore, the server’s capacity is not
only time-varying but also growing with the number of flows
present in the system. Another extreme case of our problem is
that where a fixed number of infinitely backlogged flows share
the wireless downlink: opportunistic schedulers that maximize

This research was supported in part by grants AFOSR FA9550-07-1-0428
and NSF CNS-0917067. The authors would like to thank Profs. M. Harchol-
Balter and A. Wierman for the useful discussions.

1Each flow is associated with a unique user downloading a file from the base
station; the terms flow, user, and file will sometimes be used interchangeably.

long-run average service rate/throughput under various fairness
constraints are also well understood; see, e.g., [4].

Main contributions: Using a mix of analysis and simula-
tion, we investigate features of the above-mentioned tradeoff.
The main analytical results are given in Theorems 2 and 3.
Theorem 2 characterizes the competitive ratio of flow-size-
oblivious opportunistic schedulers, like Proportional Fair (PF)
[3] or MaxQuantile [5] [6], for a transient system, and shows
that the presence of opportunistic gain mitigates their sub-
optimality. Using this, we characterize two regimes based on
the “degree” of opportunistic gain:
• A regime where the use of residual flow-size information

in scheduling will not result in a significant reduction in
flow’s delay.

• A regime where optimally using flow-size information
alongside channel state information may result in a sig-
nificant reduction in flow’s delay.

More specifically, but still informally, if the opportunistic
capacity of the wireless channel increases rapidly in the
number of users, e.g., as log(n) or log log(n) where n is the
number of users, then the mean sojourn time under a purely
opportunistic scheduler like MaxQuantile or PF is only about
1–20% higher than the minimum possible. If, however, the
opportunistic capacity increases more slowly (e.g., as 1 − an
for a ∈ [0, 1)), a significant reduction in mean sojourn time
may be achievable if schedulers exploit the residual flow-
size information. Using these insights, we propose a class
of schedulers which is simple to implement and offers good
performance irrespective of the operating regime – this is
analyzed in Theorem 3. This is part of on-going investigation.

Related work: We begin with [7] which considers a dy-
namic heterogenous wireless system under a specific flow-
size oblivious scheduler, namely, Proportional Fair (PF). Using
a time scale separation argument, it is shown that such a
system can be modeled as a multi-class Processor Sharing
(PS) queue where the server capacity/speed increases with
the total number of users in the queue. This model allows
one to obtain explicit formulas for the mean sojourn time as
well as the queue length distribution and the stability region
of the system. In this paper, we will use a similar model
for the wireless channel as the above work. Note that [8]
further shows that the sojourn times decrease if channels
change quickly. Therefore, strictly speaking, using a time-scale
separation argument to obtain a multi-class Processor Sharing
model leads to optimistic performance estimates. Neither [8]
nor [7] give bounds on sub-optimality of mean sojourn time
under PS/PF. These bounds are partly addressed in this paper.

There have been various efforts to combine SRPT and
opportunistic scheduling, however, few analytical results are
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available. Most work has focused on designing and investigat-
ing heuristics through a mix of simulation and analysis.

Both [9] and [10] consider a transient system, i.e., the
problem of transmitting a fixed set of finite sized files from
the base station to their respective destination users, with the
objective of minimizing the total expected sojourn time. [9]
shows that the problem can be set up as a Markov decision
process (MDP) with a finite state space and numerically
solved. However, perhaps due to having a very large state-
space for any useful system, it is difficult to characterize
any structural properties of the optimal scheduler from the
computed solution. [10] explores various ways of combining
SRPT and opportunistic scheduling and provides bounds on
mean sojourn time for the proposed heuristics. In this paper,
we will show that the transient system of [9] and [10] can be
modeled as a deterministic dynamic program, and explicitly
give the optimal scheduler and sojourn times for certain
insightful examples.

Both [11] and [12] consider dynamic systems, however,
[11] considers only such wireless systems where the current
channel state information is not available to the scheduler.
[12] motivates various heuristics that combine SRPT and
opportunistic scheduling, and compares them via extensive
simulation. From the presented results, one can make the
qualitative observation that all the schedulers which perform
well in various situations do not compromise opportunistic
gain or do so only minimally. [12] also points out the necessary
condition for the stabilizability of a dynamic system and
suggests that this condition may also be sufficient, but stops
short of a formal proof.

Recently, [13] has formally characterized the stability region
of such a system, and (implicitly) shown that, asymptotically
in the number of flows, any throughput-optimal scheduler must
fully exploit the opportunistic gain. It is also shown that a
version of MaxWeight scheduler which prioritizes flows with
long residual sizes can indeed be unstable. [14] shows the ver-
sion of MaxWeight which prioritizes flows with long current
sojourn times is nevertheless throughput optimal, however,
perhaps not suitable for use in a real wireless system: the
scheduler may excessively compromise opportunistic capacity
until a significant fraction of the contending flows has large
and nearly equal sojourn times. Moreover, the relation between
the residual flow-size and its current delay is unclear.

[15] deals with designing practically viable through-
put optimal schedulers and proposes a measurement-based
MaxQuantile-like scheduler. The problem of scheduling a mix
of best effort and QoS flows is also considered. Once again, the
schedulers which seem to out perform in various simulation
settings are those which do not or only minimally compromise
the opportunistic gain.

II. SYSTEM MODEL

We will first define a heterogeneous wireless system where
the heterogeneity in the users’ wireless channels is captured by
a single parameter, namely, their mean supported transmission
rate. In the next subsection, we will translate the heterogeneous
system into an equivalent system with homogeneous wireless

channels. The latter system permits certain simplifications for
subsequent exposition and analysis. The details are as follows.

A. Wireless system with heterogeneous channels
We consider a continuous time system. Let X ⊆ R2 denote

the connected coverage area of a base station. New users
arrive at random times and random locations in X , request
to download (or upload) a file of random size, and leave once
the download completes. The details are as follows.

Using an index set I = {1, 2, · · · }, we uniquely index each
user that enters the system. For each user i ∈ I, let the random
variables Ai ∈ R, Xi ∈ X , and B̃i ∈ R+ denote its arrival
time, location, and the size of the file requested, respectively.
Users are indexed in order of their arrival times, i.e., for i < j,
we have Ai ≤ Aj . We assume that,
• (Ai, i ∈ I) correspond to the jump times of a homoge-

nous Poisson process of intensity λ;
• Xi, i ∈ I are i.i.d. with density fX(·), i.e., for any

measurable B ⊆ X , we have P(X1 ∈ B) =
∫
B fX(x)dx;

• B̃i, i ∈ I are i.i.d. with density fB̃(·).
The time-varying channel state of the ith user is given by a

stationary random process
(
R̃i(t), t ∈ R

)
, where R̃i(t) ∈ R+

denotes the data/service rate supported by the user’s channel
at time t. Note that even though R̃i(t) is defined for all t, it
is relevant only over the time interval that user i spends in the
system.

Assumption 1: We assume the following regrading the dis-
tribution of

(
R̃i(t), t ∈ R

)
.2

(i) Marginal distribution: Conditional on Xi = x, we
assume that

(
R̃i(t), t ∈ R

)
has the same marginal

distribution as that of m(x)R, where R is a unit mean
random variable and m : X → [ξ1, ξ2] ⊂ (0,∞) is a
given continuous function that captures the impact of
pathloss/shadowing on the achievable transmission rate
from the base station to location x ∈ X .

(ii) Separation of time-scales: We assume that the channels
change on a much faster time-scale than that of the user
dynamics (arrivals and departures). So, for example, the
channel coherence time – the smallest τ such that R̃i(t)
and R̃i(t+ τ) are independent – is much smaller than
the mean inter-arrival time and mean sojourn time.

Let random set Q(t) ⊂ I denote the set of users with on
going file transfers at time t, i.e., the users which have arrived
but have not completed their file download by time t. We will
refer to the users in Q(t) as the users present at time t, and
to Q(t) as the queue at time t. Cardinality of the set Q(t),
i.e., the number of users present in the system at time t, is
denoted by |Q(t)|. For any i ∈ Q(t), let Li(t) > 0 denote the
ith user’s residual file size.

We will follow the convention that uppercase letters,
e.g. Q(·), denote random quantities, whereas, lowercase let-
ters, e.g. q(·), denote particular realizations. Bold letters are

2Assumption 1(i) will be used in the next subsection to shift the hetero-
geneity in the channels of users to their arrival processes, in the same manner
as done in [7]. Assumption 1(ii) will be used in Section IV-B to remove the
randomness due to time-varying channels without losing any opportunistic
gain associated with such channels. This is perhaps a key assumption which
enables most of the results presented in this chapter and in [7].



3

reserved for vectors. Also, we will make the natural distinction
between “increasing” and “strictly increasing”, and so forth.

The state of the system at time t is given by,

St ≡
(
Q(t);

(
Li(t), i ∈ Q(t)

)
;
(
R̃i(t), i ∈ Q(t)

)
;(

(Xi, Ai), i ∈ Q(t)
) )

,
(1)

We assume that the current system state is available for making
a scheduling decision, and define a scheduler or a scheduling
policy as a mapping from the current system state to the current
queue. That is, when the system is in state st, the scheduler
i∗(·) selects a user i∗(st) ∈ q(t) to receive service. If for a
given sample path we have i ∈ q(·) over some interval [t1, t2],
then the total service received by user i over [t1, t2] is given
by
∫ t2
t1
r̃i(t)11{i∗(st) = i}dt.

B. Equivalent system with i.i.d. channels but heterogeneous
file sizes

In the system described above, the channel state process of a
user at location x has the same marginal distribution as that of
m(x)R, and therefore, a mean supported transmission/service
rate of m(x). Consider a second system (constructed on the
same probability space) where all users’ channels have the
same marginal distribution as that of R, but the file sizes of
users at location x are scaled by a factor of 1/m(x). At any
time t, the system state of the second system can be derived
from the system state of the first system by appropriately
scaling

(
Li(t), i ∈ Q(t)

)
and

(
R̃i(t), i ∈ Q(t)

)
based on(

Xi, i ∈ Q(t)
)
, and keeping the remaining elements of St,

in particular, Q(t), unchanged. That is, any scheduler for the
first system can be translated into a scheduler for the second
system, such that the user arrival and departure times, as
captured by Q(t), are identical in the two systems. The second
system however has the advantage that the channel states of
the users are independent of their identities and locations.

Therefore, from this point on, we exclusively focus on
the second system where the user arrivals (Ai, i ∈ I) and
locations (Xi, i ∈ I) are statistically identical to those in the
first system, but the user channels

(
(Ri(t), t ∈ R), i ∈ I

)
and

file sizes (Bi, i ∈ I) have the following modified marginal
distributions: for all i ∈ I,
• the channel process

(
Ri(t), t ≥ 0) has the same marginal

distribution as that of the random variable R,
• the file size Bi has density fB(·) given by,

fB(b) ≡
∫
X
m(x)fB̃

(
m(x)b

)
fX(x)dx, b ∈ R+.

We continue to model a scheduler i∗(·) as a mapping from
the current system state to the current queue, i∗(st) ∈ q(t).

Next we define a new queueing model using a server with
a state-dependent but deterministic capacity region – such a
server will subsequently be used to replace the randomly-
varying channels in the above system without losing the
opportunistic capacity gains associated with such channels.

III. SERVERS WITH STATE-DEPENDENT CAPACITY
REGIONS AND M/GI/C QUEUE

Let C1, C2, . . . be sequence of nested capacity regions with
the following properties:

(i) For any n ≥ 1, Cn is a compact, convex, and coordinate-
convex region of Rn+.

(ii) Cn is symmetric, i.e., if a rate vector µ ≡ (µ1, · · · , µn) ∈
Cn, then any vector given by a permutation of µ’s
components also lies in Cn.

(iii) For k and n such that 1 ≤ k ≤ n, we have Ck = Rk+∩Cn.
Let C ≡ (Cn, n ≥ 1). Consider a server with the following
property: if there are n jobs (files) in the system, the server
can process them simultaneously according to any speed (rate)
vector from the region Cn. For example, suppose over some
interval [t1, t2] the n files are served at rate µ(t) ∈ Cn, then
the file backlog l(t) ≡ (li(t), 1 ≤ i ≤ n) over t ∈ [t1, t2]
evolves as,

l(t) =

(
l(t1)−

∫ t

t1

µ(τ)dτ

)+

.

By replacing the unit capacity server in a conventional
M/GI/1 queue with the server described above, we obtain
a new queueing model which we refer to as an M/GI/C
queue. Note that the queues M/GI/1 and M/GI/∞ queues
are special cases of the M/GI/C queue. Indeed the latter
reduces to M/GI/1 if Cn is unit n-simplex, i.e.,

Cn =
{
µ ∈ Rn+ : ‖µ‖1 ≤ 1

}
, n = 1, 2, . . .

and to M/GI/∞ if Cn is unit n-cube, i.e.,

Cn =
{
µ ∈ Rn+ : ‖µ‖∞ ≤ 1

}
, n = 1, 2, . . . .

As will become clear in the next section, we will be interested
in server capacity regions that are in between unit simplices
and unit cubes.

Next, we will show that the system with time-varying
channels and flow dynamics, described in Section II-B, can be
reduced to an instance of an M/GI/C queue by appropriately
defining the capacity regions Cn, n ≥ 1 (Section IV-A), and
using a time-scale separation argument (Section IV-B).

IV. DYNAMIC WIRELESS SYSTEM AS AN M/GI/C QUEUE

We will set Cn equal to the opportunistic capacity region of
a static wireless system, i.e., a system with a fixed number n
of infinitely-backlogged flows. A formal description of these
regions follows.

A. Opportunistic capacity region

Throughout this subsection, we will assume a static system
with a fixed number n of users. We define the opportunistic
capacity region Cn ⊂ [0, 1]n of such a system as the set of
longrun average service rates that are jointly achievable by the
n users. The specific definition is as follows.

For any r = (ri, 1 ≤ i ≤ n) ∈ Rn+, let C(r) ⊂ Rn+ be the
convex hull of n points,

(r1, 0, · · · , 0), (0, r2, 0, · · · , 0), . . . , (0, · · · , 0, rn).

The opportunistic capacity region of n channels, Cn, is defined
as,

Cn ≡
{
µ ∈ [0, 1]n :µ ≤ E [v(R)] for some v(·) that satisfies

v(r) ∈ C(r) for all r ∈ Rn+
}
,
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Fig. 1. Capacity region C2 and the tightest polymatroid upper bound C̄2.

where expectation is with respect to random R drawn from
the n-product of the distribution of R.

Any extremal point of the capacity region Cn is achievable
by a very simple, distribution-oblivious, opportunistic sched-
uler; for details see [4] or [7, Lemma 2.2].

For later use, in the following we define a polymatroid outer
bound for capacity region Cn.

The tightest polymatroid region containing Cn: Let
R1, R2, . . . be i.i.d. copies of R. For any integer k > 0, let

gk ≡ E [ max(R1, · · · , Rk) ] , (2)

and let g0 ≡ 0. This function has the following interpretation:
no single user can get an average rate exceeding g1, no two
users can get a total average rate exceeding g2, and so on.
We will refer to (gk, k ≥ 0) as the opportunistic capacity
function. We have that gk is concave increasing in k, i.e., for
any k ≥ 0, gk+1 − gk ≥ gk+2 − gk+1 ≥ 0, and therefore, the
capacity per user gk/k is decreasing in k.

Then using (gk, k ≤ n), we can define a polymatroid C̄n
as follows,

C̄n ≡

{
µ ∈ [0, 1]n : ∀K ⊆ {1, · · · , n},

∑
k∈K

µk ≤ g|K|

}
.

See Fig. 1 for an illustration of Cn and C̄n. For any n, we have
that Cn ⊆ C̄n. We also note the following.
• In general, we cannot completely construct Cn from

(gk, k ≤ n) alone. Nevertheless, we can completely
construct the outer bound C̄n.

• Region C̄n is the tightest polymatroid outer bound for Cn.
In special cases of time-varying channels, e.g., on-off channels
or information theoretic block fading multiaccess channels (as
used in [16]), we have Cn = C̄n. In fact, an alternative way
to define the outer bound C̄n is as follows: C̄n is the region
obtained by replacing Cn(r) in the definition of Cn by the
tightest polymatroid containing Cn(r). Let C̄ ≡

(
C̄n, n ≥ 1

)
.

Remark 1: We say a vector a ∈ Rn dominates a vector
b ∈ Rn if a ≥ b, and a point is maximal in a region if it
is not dominated by any other point of that region. Note that
a polymatroid capacity region has the nice property that all
maximal elements have the same L1 norm (the total service
rate). For example, the L1 norm of all maximal elements of C̄n
is gn. Therefore, a scheduler for an M/GI/C̄ queue will not
have to tradeoff maximizing total service rate with prioritizing
short files.

Let umax(n) ≡
(
gn
n , · · · ,

gn
n

)
∈ Rn. We have that umax(n)

lies in Cn, and gn = ‖umax(n)‖1 = maxµ∈Cn ‖µ‖1 =
maxµ∈C̄n ‖µ‖1. Therefore, we will refer to umax(n) as the
max-sum-rate point of region Cn as well as C̄n.

B. Time-scale separation argument and reduction to an
M/GI/C queue

We return to the homogeneous dynamic system introduced
in Section II-B, and recall the Assumption 1(ii) that channels
vary at a much faster time-scale than that of the user dynamics.
Therefore, we can further assume that at any time t, condi-
tional on |Q(t)| = n, the n users can be jointly served at any
rate from the capacity region Cn. That is, we can redefine the
scheduler as a mapping from(

q(t);
(
li(t), i ∈ q(t)

)
;
(
(xi, ai), i ∈ q(t)

))
to the capacity region C|q(t)|. For example, if for t ∈ [t1, t2],
we have |q(t)| = n and the scheduler serves at rate µ(t) ∈ Cn,
then the file backlog l(t) ≡ (li(t), i ∈ q(t1)) over t ∈ [t1, t2]
evolves as l(t) = l(t1)−

∫ t
t1
µ(τ)dτ .

This new system is simply an M/GI/C queue, where the
arrivals are Poisson with rate λ, the file sizes have density
fB(·), and the server capacity region at time t depends on
only the element |q(t)| of the system state. The reason for
converting the original system with heterogeneous channels to
the one with homogeneous channels now becomes clear: it
removed the dependence of the server capacity region C|q(t)|
on the locations of the users in q(t).

The work in [7] can be seen as analyzing an M/GI/C
queue under the scheduler that, conditional on |Q(t)| = n,
serves at the max-sum-rate point umax(n) ∈ Cn, and therefore,
simultaneously serves each of the n users in the current queue
at rate gn/n. Following [7], we will call this the Opportunistic
Processor Sharing (OPS) scheduler. This scheduler is clearly
oblivious to file sizes.

Remark 2: A few observations regarding the usefulness of
the M/GI/C queueing model are in order. By reducing the
original system to an M/GI/C queue, we have replaced the
state-dependent and randomly varying server (i.e., wireless
channel) with a state-dependent but deterministic server with-
out losing the opportunistic gain associated with a randomly
varying server. In the latter system,
• the tradeoff mentioned in the beginning of Section ?? is

manifested as a tradeoff between maximizing total service
rate (e.g., by picking the rate point umax(·)) and giving
more rate to shorter files;

• moreover, the extent of opportunistic gain present in the
channel is explicitly characterized by the marginal rate of
increase of opportunistic capacity function

(
gn, n ≥ 0).

Therefore, the M/GI/C queue is better suited to investigate
the scheduling problem, even if by simulation methods only.

The M/GI/C queue also seems more amenable to an
analytical solution than the original system; indeed, [7] gives
analytical results for at least one particular scheduler for this
queue.

We also note that the M/GI/C̄ queue – a simpler to
analyze than the M/GI/C queue due to the absence of above-
mentioned tradeoff – can be used to obtain a lower bound on
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the optimal mean sojourn time in M/GI/C queue. To this end,
in the next section, we will characterize the optimal scheduler
under polymatroid capacity regions (C̄k, k > 0) for a transient
system, and use this to bound the sub-optimality of OPS.

V. TRANSIENT SYSTEM

Throughout this section, we consider a transient system that
starts with a given number n of files, i.e., q(0) = {1, · · · , n},
of arbitrary sizes l(0) ≡ (l1(0), · · · , ln(0)) ∈ (0,∞)n, and
there are no further arrivals. The opportunistic capacity regions
C and C̄, along with the corresponding concave increasing
capacity function (gk, k ≥ 0) with g0 = 0, are specified. Since
there are no further arrivals, the system state at time t is simply
given by

(
q(t);

(
li(t), i ∈ q(t)

))
. When there are k ≤ n files

in the system, they can be served at any rate from the region
Ck ⊆ Cn (or C̄k ⊆ C̄n, depending upon the context). Let Ψ
and Ψ̄ be the set of all functions (schedulers) that map any
system state

(
q(t); l(t)

)
to a rate vector in C|q(t)| and C̄|q(t)|,

respectively.
For any scheduler ψ(·) and initial state

(
q(0); l(0)

)
, let((

qψ(t), lψ(t)
)
, t ≥ 0

)
be the associated system sample path.

The total sojourn time (or cost) under ψ(·) is denoted by
cψ(l(0); |q(0)|) and given as follows,

cψ(l(0); |q(0)|) ≡
∫ ∞

0

|qψ(t)|dt. (3)

We are interested in schedulers in Ψ that minimize the cost
starting in any state

(
q(0); l(0)

)
. We naturally have Ψ ⊆ Ψ̄,

and therefore,
min
ψ̄∈Ψ̄

cψ̄(·) ≤ min
ψ∈Ψ

cψ(·). (4)

However, only schedulers from Ψ are feasible in an actual
system which has a server with capacity region Cn. The rest
of this section is organized as follows:
• An optimal scheduler in Ψ̄ along with an expression for

optimal cost is given in Section V-A.
• An expression for cost under OPS, which lies in Ψ (and

thus also in Ψ̄), is given in Section V-B.
• The competitive ratio of OPS under particular capacity

functions is obtained in Section V-C;
• That the performance under OPS deteriorates as n be-

comes large and opportunistic capacity function gn satu-
rates is elaborated in Section V-D.

• A scheduler belonging to the set Ψ but with cost close
to the that of the optimal scheduler in Ψ̄ is proposed in
Section V-E.

All proofs are omitted and relegated to [17].

A. Optimal scheduler for polymatroid capacity regions C̄
We begin by defining the Shortest Remaining Processing

Time - Highest Possible Rate (SRPT-HPR) scheduler for
polymatroid capacity regions, i.e., SRPT-HPR lies in Ψ̄.

Definition 1: Consider a system with a concave increasing
opportunistic capacity function (gk, k ≥ 0) and the associated
capacity regions

(
C̄k, k ≥ 0

)
. At any time t and for any integer

n ≡ |q(t)| > 0, let l1(t) ≤ l2(t) ≤ . . . ≤ ln(t) be the
remaining file sizes of the n files. Then SRPT-HPR serves the

files at rate vector s
(
l(t);n

)
=
(
si(l(t);n), 1 ≤ i ≤ n

)
∈ C̄n

given as follows: for any i ∈ {1, · · · , n}, we have,

si
(
l(t);n

)
≡ gi − gi−1 .

Note that service rate allocation under SRPT-HPR depends
only on the ordering of file sizes, and the shortest file is
given as much rate as possible, i.e., g1, and having made
that allocation, the next shortest file is given as much rate
as possible, i.e., g2 − g1, and so on.

Note that a server with a polymatroid capacity region C̄n
can be decomposed into n conventional servers (like the one
in queue M/GI/1) with different speeds, such servers are
usually called parallel uniform servers [18]. More specifically,
consider n servers where the speed of the kth server is given
by gk − gk−1. Then each maximal vertex of the polymatroid
C̄n corresponds to an allocation of the n servers to the n users
(with one user per server and one server per user), and vice
versa. All other maximal points of C̄n can further be achieved
by preempting and time-sharing the n servers among the users.

Therefore, the problem of minimizing the total sojourn
time under a polymatroid capacity region C̄n is the same as
minimizing the total sojourn time under n parallel uniform
servers with preemption permitted. For the latter system, [19]
(see [18], pp. 134–136 for a proof) showed that the optimal
scheduler is the one which allocates the fastest available
server to the shortest available job/file – this indeed translates
to SRPT-HPR in our setting. An alternative proof of the
optimality of SRPT-HPR with an explicit expression for total
sojourn time is given in [17]. We summarize the results in the
following lemma and theorem.

Lemma 1: For a given concave increasing capacity function
(gk, k ≥ 0), and initial state

(
q(0); (lk(0), 1 ≤ k ≤ |q(0)|)

)
,

the cost under SRPT-HPR cs(·) is given by,

cs
(
l(0); |q(0)|

)
=

|q(0)|∑
k=1

θkl(k)(0) , (5)

where l(k)(0) denote the kth largest file, i.e., l(1)(0) ≥ · · · ≥
l(n)(0), and (θk, k > 0) are given as follows. Let θ0 ≡ 0 and
for k ≥ 0, let ∆k ≡ gk+1 − gk. Then for all n ≥ 0,

(θ ∗∆)(n) ≡
n∑
k=0

∆kθn−k = n. (6)

Using (6), θn+1 can be computed from (θk, 0 ≤ k ≤ n) for
any given capacity function (gk, k ≥ 0).

Remark 3: θk can be interpreted as time (or cost) per unit
data in the kth file. As shown in [17], θk is increasing in k.

Theorem 1: Consider a transient system with polymatroid
capacity regions

(
C̄k, k ≥ 0

)
and starting with any number

|q(0)| > 0 of files of arbitrary sizes l(0) = (lk(0), k ∈ q(0)).
Then SRPT-HPR minimizes the cost given by (3), i.e.,

cs
(
l(0); |q(0)|

)
= min
ψ∈Ψ̄

cψ
(
l(0); |q(0)|

)
.

Next, we define OPS scheduler which is not limited to
polymatroid capacity regions.
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B. OPS scheduler for capacity regions C̄ and C
The scheduling decision under OPS depends only on

(gk, k ≥ 0) and is the same for C and C̄. It is defined as
follows.

Definition 2: Consider a system with a concave increasing
opportunistic capacity function (gk, k ≥ 0) and the associated
capacity regions (Ck, k ≥ 0) or

(
C̄k, k ≥ 0

)
. At any time t

and for any integer n ≡ |q(t)| > 0, OPS serves each of the n
files at rate gn

n . Therefore, the scheduling decision for capacity
region Cn is identical to that for C̄n.

Lemma 2: For a given capacity function (gk, k ≥ 0), and
initial state

(
q(0); (lk(0), 1 ≤ k ≤ |q(0)|)

)
, the cost under

OPS cp(·) is given by,

cp
(
l(0); |q(0)|

)
=

|q(0)|∑
k=1

πkl(k)(0) , (7)

where, for any k > 0,

πk ≡
k2

gk
− (k − 1)2

gk−1
. (8)

C. Competitive ratio of OPS

For a given transient system – i.e., a capacity function
(gk, k ≥ 0) along with the actual capacity regions C and
the outer bound C̄ – we will refer to the ratio cp(·)

cs(·) as the
competitive ratio of OPS when starting in state (·). When
the starting state or an element of it is not specified, the
competitive ratio is intended to mean the supremum over
unspecified elements.

Remark 4: Competitive ratio has the following interpre-
tation. Consider a transient system starting with n files of
sizes l = (l1, · · · , ln). Given only (gk, 0 ≤ k ≤ n), the
largest possible capacity region that the server can have is
the polymatroid C̄n. Therefore, the smallest possible cost a
scheduler can have is cs(n; l). Then, the competitive ratio
cp(n;l)
cs(n;l) gives us a bound on the sub-optimality of OPS when
starting in state ({1, · · · , n}; l). Moreover, this bound is the
tightest possible if only (gk, 0 ≤ k ≤ n) is specified instead
of the complete actual capacity region Cn.

It is easy to show that if gk = k for all k ≥ 0 (regions
Ck and C̄k are k-cubes), then θk = πk = 1 and we simply
have cp(·)

cs(·) = 1. In the following, we investigate this ratio

for capacity functions of the type gk = 1−ak
1−a (equivalently,

∆k = ak) for any fixed a ∈ [0, 1). Prior to doing so, we offer
three comments on this choice of capacity function.

First, it corresponds to the capacity function of a system
where R is an on-off random variable, with P (R = 0) = a

and P
(
R = 1

1−a

)
= 1− a.

Second, parameter a provides a measure for the opportunis-
tic gain present in the system: for any fixed k, the higher
the value of a, the greater the marginal opportunistic capacity
∆k. Setting a = 0 corresponds to a non-opportunistic work-
conserving system with a single unit speed server.

Third, if R takes values in a bounded set [0, rmax], then
R is stochastically dominated by an on-off random variable
R̃ ∈ {0, rmax} with P

(
R̃ = rmax

)
≡ E[R]/rmax. Therefore,

Fig. 2. Competitive ratio of OPS plotted versus (left) n, (right) gn
g∞

.

the capacity function associated with R can be bounded above
by (gk, k ≥ 0) with a = 1− E[R]/rmax. The significance of
the results presented below is either a monotonicity in a or
independence from a, therefore, this simple choice of capacity
function still provides significant insight.

Fact 1: With gk = 1−ak
1−a for some fixed a ∈ [0, 1), we can

take the z-transform of both sides of (6) and show that the
corresponding (θk, k > 0) are given by,

θk =
k

g∞
+ a, (9)

where g∞ ≡ 1
1−a .

To indicate the dependence of cost on the parameter a, in
this subsection we will explicitly write cs(·; ·; a) and cp(·; ·; a).
Moreover, 1 in c(1;n; ·) will denote an n dimensional vector
of all ones. We have the following result; see [17] for proof.

Theorem 2: For any a ∈ [0, 1), let gk = 1−ak
1−a for all k ≥ 0.

Let cs(l;n; a) and cp(l;n; a) be the costs under SRPT-HPR
and OPS respectively, for capacity function parameter a and
when starting with n files of sizes given in l ≡ (l1, . . . , ln).
Then for any fixed a,

sup
n≥1,l∈(0,∞)n

cp(l;n; a)

cs(l;n; a)
= sup

n≥1

cp(1;n; a)

cs(1;n; a)
= 2. (10)

More precisely, as n→∞, we have,

cp(1;n; a)

cs(1;n; a)
↑ 2.

Also, for any fixed n > 0,

sup
a∈[0,1),l∈(0,∞)n

cp(l;n; a)

cs(l;n; a)
= sup

a∈[0,1)

cp(1;n; a)

cs(1;n; a)
=

2

1 + 1/n
.

More precisely, as a→ 0, we have,

cp(1;n; a)

cs(1;n; a)
↑ 2

1 + 1/n
.

D. Discussion

It follows from Theorem 2 that for any fixed n, the
competitive ratio of OPS decreases as the parameter a – a
measure of opportunistic gain – increases; see Fig. 2 (left).

However, irrespective of a, the competitive ratio of OPS is
exactly 2, which is achieved only as a monotonic limit in n.
An intuitive explanation for this is as follows: the opportunistic
capacity gk is bounded above by the limit g∞ ≡ 1

1−a , therefore
for any fixed a and correspondingly large n (where n is
the number of files), the opportunistic system appears non-
opportunistic with constant capacity g∞; thus the competitive
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ratio 2 which is the same as in the case of non-opportunistic
systems (a = 0).

See Fig. 2 (right) for a plot of competitive ratio as a
function of n versus the capacity ratio gn

g∞
. We note that the

competitive ratio is under 1.2, for all n such that gn
g∞
≤ 0.9.

But as n becomes larger beyond the point where most of the
opportunistic capacity has already been harvested, the sub-
optimality of OPS over SRPT starts to emerge and the ratio
quickly deteriorates.

To summarize: the presence of opportunistic capacity gains
mitigates the sub-optimality of OPS, however, if load increases
to a point where opportunistic capacity function saturates,
OPS can become significantly sub-optimal.

This observation naturally leads us to investigate a
threshold-based or regulated-admission scheduler described in
the next section – for all sufficiently large thresholds, the
scheduler’s competitive ratio is better than that of OPS.

E. SRPT-OPS scheduler for capacity regions C and C̄
The SRPT-OPS(n∗) scheduler admits to service at most a

fixed number n∗ of users according to SRPT, and serves the
admitted users according to OPS. The details are as follows.

Definition 3: Consider a system with a concave increasing
opportunistic capacity function (gk, k ≥ 0) and the associated
capacity regions (Ck, k ≥ 0) or

(
C̄k, k ≥ 0

)
. Set a threshold

n∗ > 0. At any time t when there are |q(t)| = n files in the
system, SRPT-OPS(n∗) serves each of the shortest min(n, n∗)
files at rate gmin(n,n∗)

min(n,n∗) , while the remaining (n−n∗)+ files wait
in a queue.

Lemma 3: For any concave increasing capacity function
(gk, k ≥ 0), and initial state

(
q(0); (lk(0), 1 ≤ k ≤ |q(0)|)

)
,

the cost under SRPT-OPS(n∗), csp(·), with threshold parame-
ter n∗ ≥ 1 is given by,

csp
(
l(0); |q(0)|

)
=

|q(0)|∑
k=1

π̂kl(k)(0) , (11)

where, for any k > 0,

π̂k ≡ π[k] +

⌊
k − 1

n∗

⌋
n∗

gn∗
, (12)

where [k] ≡ k mod n∗ (with π0 ≡ πn∗ , see (8)) and
⌊
k−1
n∗

⌋
is the integer part of k−1

n∗ .
In particular, we note that for multiples for n∗, we have

that, π̂kn∗ = πn∗ + (k−1)n∗

gn∗
, which is affine in k with slope

n∗

gn∗
. From (9), we have that for gk = 1−ak

1−a , the coefficient
θkn∗ is affine in k with slope n∗

g∞
. Therefore, the ratio π̂kn∗

θkn∗

is monotone in k and supk≥1
π̂kn∗
θkn∗

= max
(
πn∗
θn∗

, g∞gn∗

)
. This

leads to the following result.
Theorem 3: For some fixed a ∈ [0, 1), let gk = 1−ak

1−a for
all k ≥ 0. Let cs(l;n) and csp(l;n) be the costs under SRPT-
HPR and SRPT-OPS(n∗) respectively when starting with n
files of sizes given in l ≡ (l1, . . . , ln). Then we have that,

sup
n≥1,l∈(0,∞)n

csp(l;n)

cs(l;n)
≤ max

(
πn∗

θn∗
,
g∞
gn∗

)
. (13)

Moreover, for any fixed ε > 0,

lim
n→∞

sup
l∈(ε,∞)n

csp(l;n)

cs(l;n)
=

g∞
gn∗

. (14)

See Fig. 2 (right) and recall the discussion from Section
V-D: we noted that for n such that gn

g∞
. 0.9 (or g∞

gn
& 1.1),

the competitive ratio of OPS (and implicitly the ratio πn

θn
) was

fairly small, i.e., under 1.25. Therefore, in light of the bound
“max

(
πn∗
θn∗

, g∞gn∗

)
” given in (13), if the admission threshold n∗

is set at a point where most of the opportunistic capacity, say
90%, is useable under SRPT-OPS(n∗), then SRPT-OPS(n∗)
will have fairly small competitive ratio. But unlike SRPT-HPR
which allocates service from a fictitious larger capacity region
C̄n, the SRPT-OPS scheduler allocates service from the actual
region Cn and is therefore feasible in a real system.

In fact, since πk

θk
≤ 2, for any n∗ such that g∞

gn∗
≤ 2, i.e.,

at least half the opportunistic capacity is useable under SRPT-
OPS(n∗), we have that the competitive ratio of SRPT-OPS(n∗)
is always better than that of OPS. Moreover, by (14), as n→
∞, the competitive ratio of SRPT-OPS becomes g∞

gn∗
.

Next, we discuss simulation results for a dynamic system.

VI. DYNAMIC SYSTEM IN STEADY STATE

In this section, we simulate the M/GI/C̄ OPS, SRPT-HPR,
and SRPT-OPS(n∗) queues for lognormal file-size distribution
with mean and variance of 1 and 1.7 respectively. Recall
that M/GI/C̄ OPS and M/GI/C OPS are indeed identical,
and so are M/GI/C̄ SRPT-OPS(n∗) and M/GI/C SRPT-
OPS(n∗). Moreover, for the M/GI/C̄ OPS queue, various
quantities of interest including the mean sojourn time can also
be analytically computed, see, e.g., [7, Proposition 3.1].

Fig. 3 shows the simulation results for polymatroid capacity
regions C̄(1) and C̄(2) corresponding to two unbounded capac-
ity functions g(1) ≡

(
g

(1)
k , k ≥ 0

)
and g(2) ≡

(
g

(2)
k , k ≥ 0

)
,

given by

g
(1)
k = log2(1 + k) and g

(2)
k = log2(1 + log2(1 + k)).

Fig. 4 shows the simulation results for capacity regions
C̄(3) corresponding to a bounded capacity function g(3) ≡(
g

(3)
k , k ≥ 0

)
, given by g(3)

k = 2
(

1−
(

1
2

)k)
.

For g(1) and g(2), the ratio of mean sojourn time under
OPS to that under SRPT-HPR stays around 1.05 and 1.2
respectively for g(1) and g(2). For g(3), as the load increases,
the ratio of mean sojourn time under OPS to that under SRPT-
HPR increases sharply from 1.2 to 2. Whereas, the ratio of
mean sojourn time under SRPT-OPS(5) to that under SRPT-
HPR stays under 1.25. Also, see Fig. 5 for a plot of the
mean sojourn time versus the threshold n∗ for other values of
threshold besides 5, indicating that the performance of SRPT-
OPS is better than OPS for a wide range of thresholds.

After a caveat, we state our conclusions from these simula-
tion results. As per Theorem 1, SRPT-HPR is optimal only
for the transient system with polymatroid capacity regions
C̄. The optimal scheduler for the dynamic system M/GI/C̄
is not known, however, one can expect SRPT-HPR to be
close to optimal. Therefore, formally speaking, the mean
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Fig. 3. Mean number of users in the system and mean sojourn time for
unbounded capacity functions g(1) and g(2).

Fig. 4. Mean number of users in the system and mean sojourn time for
bounded capacity function g(3).

sojourn time under SRPT-HPR cannot be claimed as the
minimum achievable mean sojourn time in M/GI/C̄ system,
or a lower bound for achievable mean sojourn time in the
M/GI/C system. Nevertheless, subsequently we will compare
the performance of various schedulers against that of SRPT-
HPR, as done for the transient system.

Now we are ready to state our conclusions from the results
in Figs. 3–5. We conclude that for servers/channels with
high marginal opportunistic gain (e.g., log2(n)), a file-size
aware scheduler will not offer a significant reduction in mean
sojourn time over that of the file-size oblivious OPS (or
SRPT-OPS with large threshold). Therefore, the only case
of interest which offers room for improvement is where the
channels exhibit only moderate marginal opportunistic gains
(e.g., 1 − an). In this case, SRPT-OPS with an appropriate
threshold can offer significant improvement over OPS, e.g., for
the shown results, SRPT-OPS is not more than 25% worse than
SRPT-HPR. See [17] for further simulations and discussion.

VII. CONCLUSION

We presented new results and insights regarding the key
tradeoff involved in scheduling best effort flows over time
varying channels. Just as importantly, we reduced the com-
plex scheduling problem to a simpler system, namely queue
M/GI/C, which explicitly captures the tradeoff and other
salient features of the original scheduling problem. For a given
system load (number of users in the system), if the oppor-
tunistic capacity does not saturate, then the sub-optimality of
file-size oblivious OPS (or SRPT-OPS with large threshold) is
only minimal. If however the opportunistic capacity saturates
at the given load, then OPS can be significantly sub-optimal,

Fig. 5. Mean sojourn times under SRPT-OPS(n∗), OPS, and SRPT-HPR for
capacity function g(3) and user arrival rate λ = 1.8 user/sec.

whereas, SRPT-OPS, which makes use of file-size information,
can still offer good performance. SRPT-OPS is simple to
implement, reduces the amount of channel state feedback from
users to the base station, and offers service at a nearly constant
rate to the admitted users.
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